7. Differentiation

Name:	Class:	Date:	
		Mark	$/ 20$

1) Find the gradient at $x=-2$ by drawing a suitable tangent on the curve.

2) Find the equation of the tangent that meets the curve at $x=-1$.

3) Differentiate
a) $f(x)=-17 x^{2}$
b) $f(x)=\frac{x^{5}}{x^{2}}$
c) $y=10 x^{2}+11 x-1$
d) $f(x)=-\frac{2}{7} x^{-6}$
e) $y=\frac{1}{3 x^{3}}$
f) $f(x)=\frac{1}{4 x^{4}}-2 \sqrt[4]{x}$
g) $f(x)=\frac{9 x-x^{4}}{x}$
h) $f(x)=3 x^{3}\left(4 x^{3}+x\right)$
i) $R=8 \pi r$
4) Find the gradient of the curve whose equation is
$f(x)=5+2 x^{2}$ at the point $(4,37)$
5) Find the coordinates of the point on the curve $y=1+13 x-5 x^{2}$ where the gradient is -7
6) Find the gradient of the curve whose equation $y=f(x)$ at the point G where

$$
f(x)=4 x^{-5}+4 x^{2} \text { and } \mathrm{G} \text { is at }(1,8)
$$

7) Find the point(s) on the curve with equation $y=f(x)$ where the gradient is zero.

$$
y=5+14 x-7 x^{2}
$$

8) Find the gradient of the curve whose equation $y=f(x)$ at the point N where
$f(x)=\frac{3-10 x}{x^{2}}$ and N is at $(-3,0)$
9) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ of the following

$$
y=\frac{12}{x^{2}}+\sqrt{x}
$$

10) Find the equation of the tangent to the curve
$y=4 x-\frac{18}{x}$ at the point $(3,6)$
11) Find the equation of the normal to the curve
$y=2 x-\frac{27}{x}$ at the point $(-9,-15)$
12) Find the coordinates of the point where the tangent to the curve $y=8 x^{2}-26 x+3$ at the point $(2,-17)$ meets the normal to the same curve at the point $(0,3)$.

Solutions for the assessment 7. Differentiation
1)

Gradient $=2$
2) $y=-x+5$
3) a) $f^{\prime}(x)=-34 x$
b) $f^{\prime}(x)=3 x^{2}$
c) $\frac{d y}{d x}=20 x+11$
d) $f^{\prime}(x)=\frac{12}{7} x^{-7}$
e) $\frac{d y}{d x}=-\frac{1}{x^{4}}$
f) $f^{\prime}(x)=-\frac{1}{x^{5}}-\frac{1}{2} x^{-\frac{3}{4}}$
g) $f^{\prime}(x)=-3 x^{2}$
i) $\frac{d R}{d r}=8 \pi$
5) $(2,7)$
6) The gradient at the point G is -12
7) $(1,12)$
8) The gradient at the point N is $\frac{4}{3}$
9) $\frac{d y}{d x}=-\frac{24}{x^{3}}+\frac{1}{2} x^{-\frac{1}{2}}$ and $\frac{d^{2} y}{d x^{2}}=\frac{72}{x^{4}}-\frac{1}{4} x^{-\frac{3}{2}}$
10) The tangent at the point $(3,6)$ is $y=6 x-12$
11) The normal at the point $(-9,-15)$ is $y=-\frac{3}{7} x-\frac{132}{7}$
12) The coordinates are $\left(\frac{832}{155}, \frac{497}{155}\right)$

