7. Differentiation

Name:	Class:	Date:		
		Mark	/ 20	%

1) Find the gradient at x = -2 by drawing a suitable tangent on the curve.

2) Find the equation of the tangent that meets the curve at x = -1.

[1]

[1]

a)
$$f(x) = -17x^2$$

b) $f(x) = \frac{x^5}{x^2}$
c) $y = 10x^2 + 11x - 1$
d) $f(x) = -\frac{2}{7}x^{-6}$
e) $y = \frac{1}{3x^3}$
f) $f(x) = \frac{1}{4x^4} - 2\sqrt[4]{x}$
g) $f(x) = \frac{9x - x^4}{x}$
h) $f(x) = 3x^3(4x^3 + x)$
i) $R = 8\pi r$

_ 2

4) Find the gradient of the curve whose equation is

 $f(x) = 5 + 2x^2$ at the point (4,37)

5) Find the coordinates of the point on the curve
$$y = 1 + 13x - 5x^2$$
 where the gradient is -7 [1]

6) Find the gradient of the curve whose equation y = f(x) at the point G where [1]

$$f(x) = 4x^{-5} + 4x^2$$
 and G is at (1,8)

7) Find the point(s) on the curve with equation
$$y = f(x)$$
 where the gradient is zero. [1]

$$y = 5 + 14x - 7x^2$$

8) Find the gradient of the curve whose equation y = f(x) at the point N where [1]

$$f(x) = \frac{3 - 10x}{x^2}$$
 and N is at (-3, 0)

[1]

9) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ of the following

$$y = \frac{12}{x^2} + \sqrt{x}$$

10) Find the equation of the tangent to the curve

$$y = 4x - \frac{18}{x}$$
 at the point (3,6)

11) Find the equation of the normal to the curve

$$y = 2x - \frac{27}{x}$$
 at the point (-9,-15)

12) Find the coordinates of the point where the tangent to the curve $y = 8x^2 - 26x + 3$ at the point (2,-17) meets the normal to the same curve at the point (0,3).

[1]

[1]

[1]

[1]

Solutions for the assessment 7. Differentiation

Gradient
$$= 2$$

2) y = -x + 5

- **3)** a) f'(x) = -34x
 - c) $\frac{dy}{dx} = 20x + 11$
 - e) $\frac{dy}{dx} = -\frac{1}{x^4}$

g) $f'(x) = -3x^2$

i) $\frac{dR}{dr} = 8\pi$

5) (2,7)

9)
$$\frac{dy}{dx} = -\frac{24}{x^3} + \frac{1}{2}x^{-\frac{1}{2}}$$
 and $\frac{d^2y}{dx^2} = \frac{72}{x^4} - \frac{1}{4}x^{-\frac{3}{2}}$

- b) $f'(x) = 3x^2$ d) $f'(x) = \frac{12}{7}x^{-7}$ f) $f'(x) = -\frac{1}{x^5} - \frac{1}{2}x^{-\frac{3}{4}}$ h) $f'(x) = 72x^5 + 12x^3$ 4) The gradient at the point (4,37) is 16 6) The gradient at the point G is -12
- **8**) The gradient at the point N is $\frac{4}{3}$

10) The tangent at the point (3,6) is y = 6x - 12

11) The normal at the point (-9,-15) is $y = -\frac{3}{7}x - \frac{132}{7}$ **12**) The coordinates are $\left(\frac{832}{155}, \frac{497}{155}\right)$

Copyright Mathster.com 2014. Licensed by Your School with permission to redistribute